A := array(
(7.9,39.77,8.49,12.94,19.27,11.05,2.04,13.29),
(7.68,50.37,11.35,13.3,19.25,14.59,2.75,14.87),
(9.42,27.93,8.2,8.14,16.17,9.42,1.55,9.76),
(9.16,27.98,9.01,9.32,15.99,9.1,1.82,11.35),
(10.06,28.64,10.52,10.05,16.18,8.39,1.96,10.81));
dmethods := 1;
methods := 1;
output := array('best':1);
ret1 := Cluster_System(a,Dmethods,Methods);
ret2 := Cluster_System(a,Dmethods,Methods,output);
结果:
ret1,为谱系图
array(
(2,3,2.2032702966273),
(2,3,3.50368377568526),
(0,1,11.6726218134573),
(0,1,18.0243203755371));
谱系图解析:
每行表示一次归类,(2,3,2.2032702966273)表示将第2个样本与第3个样本合并,为样本2,样本3,4为合并前的样本4,5,样本数减少一个。(2,3,3.50368377568526)表示将第3个样本与第2个样本合并为样本2,样本3为该次合并前的样本4, 样本数减少一个。
ret2为最佳分类
array(0,0,1,1,1) ;
样本0,1 被分在第一个类;
样本 2,3,4 被分在第二个类中;
Distance Cluster_Kmeans Cluster_ward